BMath-II, Rings and Modules: Mid-semestral exam

Instructions: Total time 3 Hours. Solve as many problems as you like, for a max score of 30 . Please use only results proved in the class, without proving them again. If you wish to use any problem from any source, please provide its solution.

1. Let R be a factorization domain (i.e. an integral domain in which every nonzero, nonunit element factors into irreducubles). Assume any two elements in R have a gcd. Prove that R is a UFD.
2. Give an example of a UFD R and elements $a, b \in R$ such that $\operatorname{gcd}(a, b)$ is not of the form $\lambda a+\mu b$ for $\lambda, \mu \in R$.
3. Let I be a nonzero ideal in the ring of Gaussian integers $\mathbb{Z}[i]$. Prove that $\mathbb{Z}[i] / I$ is finite.
4. Let $R:=\mathbb{Z}[i]$. Compute the number of elements, as well as the characteristics of the rings
(i) $R /\langle 3\rangle$ (ii) $R /\langle 1+i\rangle$ (iii) $R /\langle 1+2 i\rangle$.
5. Let $\alpha=7+2 i, \beta=3-4 i$ in $\mathbb{Z}[i]$. Find $\sigma, \rho \in \mathbb{Z}[i]$ such that $N(\rho)<N(\beta)$ and $\alpha=\beta \sigma+\rho$.
6. Let R be any integral domain. Prove that the polynomial ring $R[X]$ has infinitely many monic irredicuble polynomials.
7. Let $\mathbb{H}=\mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} k$ be the algebra of real quaternion as discussed in the class. Prove that the equation $X^{2}=-1$ has infinitely many solutions in \mathbb{H}.
8. Let F be a field and let $\mathbb{H}_{F}:=F \oplus F i \oplus F j \oplus F k$, where $i, j, k=i j$ have the usual meaning, denote the quaternions over F, as discussed in the class. Give an example of a field F such that \mathbb{H}_{F} is not a division ring, explaining your answer.
9. Let R be a UFD and $f(X, Y) \in R[X, Y]$ be the polynomial $f(X, Y)=$ $Y^{5}+X^{4} Y^{3}+X^{3} Y^{2}+X$. Is f irreducible in $R[X, Y]$? explain.
